Extraction of functional domains in optical imaging data using regularized nonnegative matrix factorization
نویسندگان
چکیده
منابع مشابه
Local Learning Regularized Nonnegative Matrix Factorization
Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...
متن کاملEquiNMF: Graph Regularized Multiview Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) methods have proved to be powerful across a wide range of real-world clustering applications. Integrating multiple types of measurements for the same objects/subjects allows us to gain a deeper understanding of the data and refine the clustering. We have developed a novel Graph-reguarized multiview NMF-based method for data integration called EquiNMF. The ...
متن کاملAnalysis of two-mode network data using nonnegative matrix factorization
Nonnegative matrix factorization has been offered as a fast and effective method for analyzing nonnegative two-mode proximity data. The goal is to structurally represent a nonnegative proximity matrix as the product of two lower-dimensional nonnegative matrices. Goodness of fit is typically measured as the sum of the squared deviations between the observed matrix elements and the estimated elem...
متن کاملNonnegative Matrix Factorization for Spectral Data Analysis
Data analysis is pervasive throughout business, engineering and science. Very often the data to be analyzed is nonnegative, and it is often preferable to take this constraint into account in the analysis process. Here we are concerned with the application of analyzing data obtained using astronomical spectrometers, which provide spectral data which is inherently nonnegative. The identification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2011
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2011.53.00077